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April 1984

Research Objective

The ejector component models and their test set-up have been designed

to provide measurement of the pressure distributions along the upper and

lower surfaces of the ejector at various outlet area ratios and to measure

the forces, and primary and secondary pressures and temperatures required to

evaluate the mass flows and thrust augmentations at various ejector geometries

and simulated flight conditions.

Status of the Research Effort

Test Set-up

The FDRC static test stand has been modified to accept the ejector model

as illustrated on Figure 1. The primary, high pressure, ambient temperature

air is supplied from a pressure vessel having a maximum pressure of 250 psig.

The discharge from the pressure vessel is controlled by a remote valve and

pressure regulator, through an orifice, to permit a controlled, adjustable

pressure at the primary nozzles. To simulate the stagnation pressure due to

translational flight, the secondary air is supplied from a Model RAS 60, 717

Roots Connersville displacement blower, through a system of tubes, orifices

and valves. Its pressure is controlled by the use of a by-pass system permitting

secondary air stagnation pressures to about 8 psig, simulating a flight Mach

number of about 0.8.

The ejector is enclosed in a box capable of maintaining the secondary

air and fitted with adjustable primary nozzles. The ejector component has

a width of 3.0 inches and a height which has been varied from 0.25 inches to

1.0 inches, and a mixing length which can be varied from about 1.0 inches to

about 3.5 inches. The outlet of the 1.0 inch ejector is remotely adjustable to

provide a means for starting the second solution flow and for achieving the

outlet area required for efficient operation of the second solution flow.
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Test results

Table I is a summary of the tests performed on various ejectors having

fixed and/or variable outlet geometries and variable primary pressures.

TABLE I

Config Throat width Outlet width Mixing length Flight Mach No. Remarks

O. X X Z M
*2 E m C

7.55 0.25 0.25 2.5 0.5 DN
7.55 0.25 0.25 2.5 0.65 DN
7.55 0.25 0.25 2.5 0.81 DN

7.55 0.25 0.212 2.5 0.65 DN
7.55 0.25 0.212 2.5 0.81 DN

15.1 0.501 0.443 2.5 0.65 DN

15.1 0.501 0.443 2.5 0.81 DN

30.2 0.986 0.883 1.5 0.65 DN

30.2 1.000 0.906 2.5 0.5 DN
30.2 1.000 0.906 2.5 0.65 DN
30.2 1.000 0.906 2.5 0.81 DN

30.2 1.000 0.906 3.5 0.65 DN
30.2 1.000 0.906 3.5 0.81 DN

15.1 0.25 0.22 2.5 0.65 SCN Z =-.25
15.1 0.25 0.22 2.5 0.81 SCN ZP=-.25

p
15.1 0.25 0.22 2.5 0.81 SCN Z =-.75

p
30.2 0.501 0.44 2.5 0.65 SCN Z =-.25

p
30.2 1.000 0.9-1.3 2.5 0.5 DN
30.2 1.000 0.9-1.3 2.5 0.65 DN
30.2 1.000 0.9-1.3 2.5 0.81 DN

DN - double array of nozzles
SCN - single array of central nozzles
Z - position of primary nozzles relative to entrance to mixing sectionp
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Pressure distributions along the ejector surfaces are presented on

Figures 2 through 21.

Figure 2 illustrates the pressure distribution along the ejector surfaces

at a simulated Mach number of 0.5 for the smallest ejector tested. As can be

observed on Figure 2, the sharp pressure rise in the constant cross-section mixing

section occurs at a primary plenum pressure (P ) of about 65.3 psig, and
op

proceeds downstream as the primary plenum pressure is increased. As shown

on Figure 22, that rapid rise of pressure is a result of the presence of

a starting shock wave. At a primary plenum pressure of 70.5 psig, the

Schlieren photograph presented on Fig. 22 indicates the presence of a shock

wave at about the center of the mixing section. As the primary plenum pressure

is further increased, the shock wave progresses towards the exit of the ejector

and reaches the end of the uniform cross-section at a plenum pressure of

85.1 psig.

Figure 3 illustrates the pressure distribution for the same ejector

at a simulated flight Mach number of 0.65. At this increased flight Mach number

the shock wave is able to exit the ejector and to form a system of oblique shock

waves outside of the ejector, as shown for primary plenum pressures in excess of

80.3 psig. This is further corroborated by observation of Fig. 23, which depicts

the external oblique system of shock waves. Thus it may be concluded that the

ejector flow represents a second solution flow in a constant cross-section

ejector.

The efficient operation of a second solution ejector requires a correct

outlet configuration. Thus the geometry illustrated on Fig's 2 - 4 represents

the achievement of a second solution ejector flow, however it is not efficient,

since the outlet area ratio is not optimized, as described in Ref's 1 and 2.

Further attempts to achieve second solution flows with ejectors having fixed

outlets with area ratios less than 1.0 did not result in second solution flows,

as illustrated on Figures 5 - 18.

Figures 5 - 18 depict pressure distributions of ejectors having outlet

configurations theoretically designed for starting a second solution flow.

However, these ejector outlets are within the one-dimensional geometric

limitations of the first solution outlet designs, and therefore they default

to the first solution, as explained in Ref. 3.



Further testing of the variable outlet ejector resulted in the pressure

distributions illustrated on Fig's. 19 - 21. The results indicate that for

those simulated flight Mach numbers and for outlet configurations which were

not within the limitation of the first solution (Xe/X 2 greater than the

first solution limit) the second solution flow was achieved. Thus as indicated

on the Schlieren photograph of Fig 24, for O, = 30.2, Moo = 0.81, and X e/X 2 = 1.1,

at a primary plenum pressure of 75 psig, (an outlet area ratio which is greater

than that prescribed for the limit of the first solution) the second solution

has been achieved, since the shock wave can be observed in the diverging

supersonic nozzle.

To achieve the desired goal of an efficient high speed ejector, it is

intended to test the variable outlet ejector and to reduce the outlet area

after starting the second solution flow at a larger outlet area. To perform

those tests it is important to recalibrate the test rig and instrumentation,

since the measurement of thrust augmentation on the present static test rig

requires high accuracy in measurement of the pressures, temperatures and forces.
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Publications

The papers published in technical journals are those listed as Ref's 1 & 2.

A third paper (Ref. 3) has been presented to the AIAA Journal for publication

and is presently being reviewed.

Personnel

Dr. Morton Alperin, Ph.D. 1950 Cal. Inst. of Tech.
Mr. Jiunn-Jenq Wu, Eng. 1971 Cal. Inst. of Tech.
Ms. Marilyn Stein, BS 1983 Univ. of Cal. Los Angeles

Interactions

A paper has been presented at the Ejector Workshop for Aerospace

Applications at the University of Dayton, June 1982.
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P 65.1 psig

Figure 22. Formation of Starting
Shock Wave
M 00=0.5; oL* = 75
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Examples of Ejector Flows under the Second Solution

Figure 23. M = 0.65, cL* 7.55, X 2 X 0.25", Z m 2.5", Pp 105 psig

Figure 24. =0.81, a* 30.2, X 2 1ot, X e 1.1", Z M 3", Pop 75 psig


